YES 0.962 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/List.hs
H-Termination of the given Haskell-Program with start terms could successfully be proven:



HASKELL
  ↳ IFR

mainModule List
  ((delete :: Char  ->  [Char ->  [Char]) :: Char  ->  [Char ->  [Char])

module List where
  import qualified Maybe
import qualified Prelude

  delete :: Eq a => a  ->  [a ->  [a]
delete deleteBy (==)

  deleteBy :: (a  ->  a  ->  Bool ->  a  ->  [a ->  [a]
deleteBy _ _ [] []
deleteBy eq x (y : ys if x `eq` y then ys else y : deleteBy eq x ys


module Maybe where
  import qualified List
import qualified Prelude



If Reductions:
The following If expression
if eq x y then ys else y : deleteBy eq x ys

is transformed to
deleteBy0 ys y eq x True = ys
deleteBy0 ys y eq x False = y : deleteBy eq x ys



↳ HASKELL
  ↳ IFR
HASKELL
      ↳ BR

mainModule List
  ((delete :: Char  ->  [Char ->  [Char]) :: Char  ->  [Char ->  [Char])

module List where
  import qualified Maybe
import qualified Prelude

  delete :: Eq a => a  ->  [a ->  [a]
delete deleteBy (==)

  deleteBy :: (a  ->  a  ->  Bool ->  a  ->  [a ->  [a]
deleteBy _ _ [] []
deleteBy eq x (y : ysdeleteBy0 ys y eq x (x `eq` y)

  
deleteBy0 ys y eq x True ys
deleteBy0 ys y eq x False y : deleteBy eq x ys


module Maybe where
  import qualified List
import qualified Prelude



Replaced joker patterns by fresh variables and removed binding patterns.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
HASKELL
          ↳ COR

mainModule List
  ((delete :: Char  ->  [Char ->  [Char]) :: Char  ->  [Char ->  [Char])

module List where
  import qualified Maybe
import qualified Prelude

  delete :: Eq a => a  ->  [a ->  [a]
delete deleteBy (==)

  deleteBy :: (a  ->  a  ->  Bool ->  a  ->  [a ->  [a]
deleteBy vw vx [] []
deleteBy eq x (y : ysdeleteBy0 ys y eq x (x `eq` y)

  
deleteBy0 ys y eq x True ys
deleteBy0 ys y eq x False y : deleteBy eq x ys


module Maybe where
  import qualified List
import qualified Prelude



Cond Reductions:
The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
HASKELL
              ↳ Narrow

mainModule List
  (delete :: Char  ->  [Char ->  [Char])

module List where
  import qualified Maybe
import qualified Prelude

  delete :: Eq a => a  ->  [a ->  [a]
delete deleteBy (==)

  deleteBy :: (a  ->  a  ->  Bool ->  a  ->  [a ->  [a]
deleteBy vw vx [] []
deleteBy eq x (y : ysdeleteBy0 ys y eq x (x `eq` y)

  
deleteBy0 ys y eq x True ys
deleteBy0 ys y eq x False y : deleteBy eq x ys


module Maybe where
  import qualified List
import qualified Prelude



Haskell To QDPs


↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
QDP
                  ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

new_deleteBy0(wu17, wu18, wu19, Zero, Succ(wu210)) → new_deleteBy00(wu17, wu18, wu19)
new_deleteBy(wu300, :(wu410, wu411)) → new_deleteBy01(wu411, wu410, Char(Succ(wu300)))
new_deleteBy01(:(wu410, wu411), Char(Zero), Char(Succ(wu300))) → new_deleteBy01(wu411, wu410, Char(Succ(wu300)))
new_deleteBy0(wu17, wu18, wu19, Succ(wu200), Succ(wu210)) → new_deleteBy0(wu17, wu18, wu19, wu200, wu210)
new_deleteBy0(wu17, wu18, wu19, Succ(wu200), Zero) → new_deleteBy(wu19, wu17)
new_deleteBy00(wu17, wu18, wu19) → new_deleteBy(wu19, wu17)
new_deleteBy01(wu41, Char(Succ(wu4000)), Char(Succ(wu300))) → new_deleteBy0(wu41, wu4000, wu300, wu300, wu4000)
new_deleteBy01(:(wu410, wu411), Char(Succ(wu4000)), Char(Zero)) → new_deleteBy01(wu411, wu410, Char(Zero))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
QDP
                        ↳ QDPSizeChangeProof
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_deleteBy01(:(wu410, wu411), Char(Succ(wu4000)), Char(Zero)) → new_deleteBy01(wu411, wu410, Char(Zero))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
QDP
                        ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

new_deleteBy(wu300, :(wu410, wu411)) → new_deleteBy01(wu411, wu410, Char(Succ(wu300)))
new_deleteBy0(wu17, wu18, wu19, Zero, Succ(wu210)) → new_deleteBy00(wu17, wu18, wu19)
new_deleteBy01(:(wu410, wu411), Char(Zero), Char(Succ(wu300))) → new_deleteBy01(wu411, wu410, Char(Succ(wu300)))
new_deleteBy0(wu17, wu18, wu19, Succ(wu200), Succ(wu210)) → new_deleteBy0(wu17, wu18, wu19, wu200, wu210)
new_deleteBy0(wu17, wu18, wu19, Succ(wu200), Zero) → new_deleteBy(wu19, wu17)
new_deleteBy00(wu17, wu18, wu19) → new_deleteBy(wu19, wu17)
new_deleteBy01(wu41, Char(Succ(wu4000)), Char(Succ(wu300))) → new_deleteBy0(wu41, wu4000, wu300, wu300, wu4000)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: